Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Dev Biol ; 7: 303, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31850342

RESUMO

The limited access to functional human brain tissue has led to the development of stem cell-based alternative models. The differentiation of human pluripotent stem cells into cerebral organoids with self-organized architecture has created novel opportunities to study the early stages of the human cerebral formation. Here we applied state-of-the-art label-free shotgun proteomics to compare the proteome of stem cell-derived cerebral organoids to the human fetal brain. We identified 3,073 proteins associated with different developmental stages, from neural progenitors to neurons, astrocytes, or oligodendrocytes. The major protein groups are associated with neurogenesis, axon guidance, synaptogenesis, and cortical brain development. Glial cell proteins related to cell growth and maintenance, energy metabolism, cell communication, and signaling were also described. Our data support the variety of cells and neural network functional pathways observed within cell-derived cerebral organoids, confirming their usefulness as an alternative model. The characterization of brain organoid proteome is key to explore, in a dish, atypical and disrupted processes during brain development or neurodevelopmental, neurodegenerative, and neuropsychiatric diseases.

2.
Stem Cells Int ; 2019: 2608482, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31781235

RESUMO

In vitro-expanded bone marrow stromal cells (BMSCs) have long been proposed for the treatment of complex bone-related injuries because of their inherent potential to differentiate into multiple skeletal cell types, modulate inflammatory responses, and support angiogenesis. Although a wide variety of methods have been used to expand BMSCs on a large scale by using good manufacturing practice (GMP), little attention has been paid to whether the expansion procedures indeed allow the maintenance of critical cell characteristics and potency, which are crucial for therapeutic effectiveness. Here, we described standard procedures adopted in our facility for the manufacture of clinical-grade BMSC products with a preserved capacity to generate bone in vivo in compliance with the Brazilian regulatory guidelines for cells intended for use in humans. Bone marrow samples were obtained from trabecular bone. After cell isolation in standard monolayer flasks, BMSC expansion was subsequently performed in two cycles, in 2- and 10-layer cell factories, respectively. The average cell yield per cell factory at passage 1 was of 21.93 ± 12.81 × 106 cells, while at passage 2, it was of 83.05 ± 114.72 × 106 cells. All final cellular products were free from contamination with aerobic/anaerobic pathogens, mycoplasma, and bacterial endotoxins. The expanded BMSCs expressed CD73, CD90, CD105, and CD146 and were able to differentiate into osteogenic, chondrogenic, and adipogenic lineages in vitro. Most importantly, nine out of 10 of the cell products formed bone when transplanted in vivo. These validated procedures will serve as the basis for in-house BMSC manufacturing for use in clinical applications in our center.

3.
OTA Int ; 1(3): e008, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33937646

RESUMO

INTRODUCTION: Nonunion is a challenging condition in orthopaedics as its etiology is not fully understood. Clinical interventions currently aim to stimulate both the biological and mechanical aspects of the bone healing process by using bone autografts and surgical fixation. However, recent observations showed that atrophic nonunion tissues contain putative osteoprogenitors, raising the hypothesis that its reactivation could be explored to achieve bone repair. METHODS: Here we characterized atrophic nonunion stromal cells (NUSC) in vitro, using bone marrow stromal cells (BMSC) and osteoblasts as controls cells of the osteoblastic lineage, and evaluated its ability to form bone in vivo. RESULTS: NUSC had proliferative and senescence rates comparable to BMSC and osteoblasts, and homogeneously expressed the osteolineage markers CD90 and CD73. Regarding CD105 and CD146 expression, NUSC were closely related to osteoblasts, both with an inferior percentage of CD105+/CD146+ cells as compared to BMSC. Despite this, NUSC differentiated along the osteogenic and adipogenic lineages in vitro; and when transplanted subcutaneously into immunocompromised mice, new bone formation and hematopoietic marrow were established. CONCLUSIONS: This study demonstrates that NUSC are osteogenically competent, supporting the hypothesis that their endogenous reactivation could be a strategy to stimulate the bone formation while reducing the amount of bone autograft requirements.

4.
Injury ; 48 Suppl 4: S41-S49, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29145967

RESUMO

INTRODUCTION: Femoral shaft fractures generally occur in young adults following a high-energy trauma and are prone to delayed union/non-union. Novel therapies to stimulate bone regeneration will have to mimic some of the aspects of the biology of fracture healing; however, which are these aspects is unclear. Locked intramedullary nailing is the current treatment of choice for the stabilisation of femur shaft fractures, and it is associated with accelerated healing and increased union rates. These benefits were partially attributed to the reaming procedure, which, regardless of significantly destroying the haematoma, stimulates the healing response. To better understand how reaming influences healing, we evaluated the viability of the nucleated cell fraction and the frequency of CD146+ skeletal progenitors, which contain multipotent cells, in the post-reaming haematoma. We also screened the concentrations of inflammatory mediators and growth factors in the fracture site after reaming compared with those in the original haematoma. METHODS: Pre- and post-reaming haematomas were percutaneously aspirated from the fracture site of 15 patients with closed femoral shaft fractures. Cellular viability and the percentage of CD146+ progenitors were analysed by flow cytometry. The concentrations of cytokines and growth factors were determined by ELISA. RESULTS: AnnexinV/Pi analysis showed that the viability of the total nucleated cell fraction was decreased in the post-reaming haematoma. However, the procedure increased the percentage of CD146+ skeletal progenitors in the fracture site. Analysis of cytokines and growth factors in supernatants showed a decreased concentration of the inflammatory mediators IL-6, CCL-4, and MCP-1, along with an increase of anti-inflammatory IL-10, and the growth factors bFGF and PDGF-AB. CONCLUSION: These findings support the view that the positive effects of reaming on fracture healing might result from mechanically grafting the fracture site with a population of skeletal progenitors that contain multipotent cells; transitioning the signalling environment to a less inflammatory state, and enhancing the availability of specific osteogenic and angiogenic factors. A better understanding of the requisite stimuli for optimal bone repair, considering the disturbances made by orthopaedic treatments, will be determinant for the development of innovative treatments for bone repair.


Assuntos
Basigina/metabolismo , Fraturas do Fêmur/cirurgia , Fixação Intramedular de Fraturas , Consolidação da Fratura/fisiologia , Hematoma/patologia , Mediadores da Inflamação/metabolismo , Osteogênese/fisiologia , Adulto , Pinos Ortopédicos , Ensaio de Imunoadsorção Enzimática , Feminino , Fraturas do Fêmur/imunologia , Citometria de Fluxo , Consolidação da Fratura/imunologia , Hematoma/etiologia , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
5.
PeerJ ; 5: e2927, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28194309

RESUMO

Systematic studies of micronutrients during brain formation are hindered by restrictions to animal models and adult post-mortem tissues. Recently, advances in stem cell biology have enabled recapitulation of the early stages of human telencephalon development in vitro. In the present work, we analyzed cerebral organoids derived from human pluripotent stem cells by synchrotron radiation X-ray fluorescence in order to measure biologically valuable micronutrients incorporated and distributed into the exogenously developing brain. Our findings indicate that elemental inclusion in organoids is consistent with human brain tissue and involves P, S, K, Ca, Fe and Zn. Occurrence of different concentration gradients also suggests active regulation of elemental transmembrane transport. Finally, the analysis of pairs of elements shows interesting elemental interaction patterns that change from 30 to 45 days of development, suggesting short- or long-term associations, such as storage in similar compartments or relevance for time-dependent biological processes. These findings shed light on which trace elements are important during human brain development and will support studies aimed to unravel the consequences of disrupted metal homeostasis for neurodevelopmental diseases, including those manifested in adulthood.

6.
Front Cell Neurosci ; 6: 36, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22973193

RESUMO

Understanding the cellular basis of neurological disorders have advanced at a slow pace, especially due to the extreme invasiveness of brain biopsying and limitations of cell lines and animal models that have been used. Since the derivation of pluripotent stem cells (PSCs), a novel source of cells for regenerative medicine and disease modeling has become available, holding great potential for the neurology field. However, safety for therapy and accurateness for modeling have been a matter of intense debate, considering that genomic instability, including the gain and loss of chromosomes (aneuploidy), has been repeatedly observed in those cells. Despite the fact that recent reports have described some degree of aneuploidy as being normal during neuronal differentiation and present in healthy human brains, this phenomenon is particularly controversial since it has traditionally been associated with cancer and disabling syndromes. It is therefore necessary to appreciate, to which extent, aneuploid pluripotent stem cells are suitable for regenerative medicine and neurological modeling and also the limits that separate constitutive from disease-related aneuploidy. In this review, recent findings regarding chromosomal instability in PSCs and within the brain will be discussed.

7.
PLoS One ; 6(6): e20667, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21674001

RESUMO

The existence of loss and gain of chromosomes, known as aneuploidy, has been previously described within the central nervous system. During development, at least one-third of neural progenitor cells (NPCs) are aneuploid. Notably, aneuploid NPCs may survive and functionally integrate into the mature neural circuitry. Given the unanswered significance of this phenomenon, we tested the hypothesis that neural differentiation induced by all-trans retinoic acid (RA) in pluripotent stem cells is accompanied by increased levels of aneuploidy, as previously described for cortical NPCs in vivo. In this work we used embryonal carcinoma (EC) cells, embryonic stem (ES) cells and induced pluripotent stem (iPS) cells undergoing differentiation into NPCs. Ploidy analysis revealed a 2-fold increase in the rate of aneuploidy, with the prevalence of chromosome loss in RA primed stem cells when compared to naïve cells. In an attempt to understand the basis of neurogenic aneuploidy, micronuclei formation and survivin expression was assessed in pluripotent stem cells exposed to RA. RA increased micronuclei occurrence by almost 2-fold while decreased survivin expression by 50%, indicating possible mechanisms by which stem cells lose their chromosomes during neural differentiation. DNA fragmentation analysis demonstrated no increase in apoptosis on embryoid bodies treated with RA, indicating that cell death is not the mandatory fate of aneuploid NPCs derived from pluripotent cells. In order to exclude that the increase in aneuploidy was a spurious consequence of RA treatment, not related to neurogenesis, mouse embryonic fibroblasts were treated with RA under the same conditions and no alterations in chromosome gain or loss were observed. These findings indicate a correlation amongst neural differentiation, aneuploidy, micronuclei formation and survivin downregulation in pluripotent stem cells exposed to RA, providing evidence that somatically generated chromosomal variation accompanies neurogenesis in vitro.


Assuntos
Aneuploidia , Núcleo Celular/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Neurogênese/genética , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/efeitos dos fármacos , Tretinoína/farmacologia , Animais , Linhagem Celular Tumoral , Núcleo Celular/genética , Núcleo Celular/metabolismo , Instabilidade Cromossômica/efeitos dos fármacos , Células-Tronco Embrionárias/citologia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Camundongos , Células-Tronco Pluripotentes/metabolismo
8.
Cell Biol Int ; 34(4): 399-408, 2010 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-19947926

RESUMO

ESCs (embryonic stem cells) are potentially able to replace damaged cells in animal models of neural pathologies such as Parkinson's disease, stroke and spinal cord lesions. Nevertheless, many issues remain unsolved regarding optimal culturing procedures for these cells. For instance, on their path to differentiation in vitro, which usually involves the formation of EBs (embryoid bodies), they may present chromosomal instability, loss of pluripotency or simply die. Therefore, finding strategies to increase the survival of cells within EBs is of great interest. Cannabinoid receptors have many roles in the physiology of the adult body, but little is known about their role in the biology of ESCs. Herein, we investigated how two cannabinoid receptors, CB1 and CB2, may affect the outcome of ESCs aggregated as EBs. RT-PCR (reverse transcriptase-PCR) revealed that EBs expressed both CB1 and CB2 receptors. Aggregation of ESCs into EBs followed by 2-day incubation with a CB1/CB2 agonist reduced cell death by approximately 45%, which was reversed by a CB1 antagonist. A specific CB2 agonist also reduced cell death by approximately 20%. These data indicate that both cannabinoid receptors, CB1 and CB2, are involved in reducing cell death in EBs mediated by exogenous cannabinoids. No increase in proliferation, neural differentiation or changes in chromosomal stability was observed. This study indicates that cannabinoid signalling is functionally implicated in the biology of differentiating ESCs, being the first to show that activation of cannabinoid receptors is able to increase cell viability via reduction of cell death rate in EBs.


Assuntos
Células-Tronco Embrionárias/citologia , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/metabolismo , Animais , Apoptose , Diferenciação Celular , Proliferação de Células , Instabilidade Cromossômica , Células-Tronco Embrionárias/metabolismo , Camundongos
9.
J Vis Exp ; (31)2009 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-19734841

RESUMO

Although human embryonic stem cells (hESC) have been shown to present a stable diploid karyotype, many studies have reported that depending on culture conditions they become prone to acquire chromosomal anomalies such as addition of whole or parts of chromosomes. Indeed, during long-term culture, karyotypic alterations are observed when enzymatic or chemical dissociation are used, while manual dissection of colonies for passaging retains a stable karyotype. Besides, changes in the environment such as the removal of feeder cells also seem to compromise the genetic integrity of hESC. Once chromosomal alterations could affect cellular physiology, the characterization of the genetic integrity of hESC in vitro is crucial considering hESC as an essential tool in embryogenesis studies and drug testing. Furthermore, for future therapeutic purposes chromosomal changes are a real concern as it is frequently associated to carcinogenesis. Here we show a simple and useful method to obtain high quality chromosome spreads for subsequent analysis of chromosome set by G-banding, FISH, SKY or CGH techniques. We recommend checking the chromosomal status routinely with intervals of 5 passages in order to monitor the appearance of translocations and aneuploidies.


Assuntos
Cromossomos Humanos , Células-Tronco Embrionárias/ultraestrutura , Cariotipagem/métodos , Células Cultivadas , Aberrações Cromossômicas , Células-Tronco Embrionárias/citologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...